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Outline

Introduction and Background: Holography and fluids
Hydrodynamics (relativistic CFT and the non-relativistic limit)
Fluid-gravity correspondence

Null surface dynamics (Eling, Fouxon, Neiman, Oz 2009-2011)
Null Gauss-Codazzi equations encode boundary fluid dynamics
Fluid vorticity ! horizon “rotation two-form" (Eling and Oz, 1308.1651)

A Geometrization of turbulence
For 4d black brane dual to 2+1 d fluid, vorticity scalar mapped to  2
Newman-Penrose scalar
Statistical scaling of horizon structure

Discussion
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AdS/CFT and Hydrodynamics

Holographic principle: microscopic gravity dof in a volume V encoded on
a boundary A of region
Concrete realization of holographic principle in AdS/CFT (or more
generally gauge/gravity) correspondences

Quantum gravity is equivalent to some gauge theory in one lower dimension
“on the boundary"

Most studied regime: where the bulk theory is classical gravity and the
dual gauge theory is (infinitely) strongly coupled
A thermal state of the gauge theory , a classical black hole spacetime
Consider long wavelength, long time perturbations of the BH ,
Hydrodynamics of the gauge theory
(Policastro, Son, and Starinets 2001)
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(Relativistic) Hydrodynamics

Universal description of large scale (long time, wavelength) dynamics of
a field theory
Regime where the Knudsen number ✏ ⌘ `corr

L ⌧ 1
Microscopic theory obeys exact conservation laws, e.g.

@⌫Tµ⌫ = 0, (1)

⇢ = T 00,⇧i = T 0i (2)

Constitutive relation: Kn (gradient) expansion

T ij = P(⇢)�ij + @ i⇧j + @2 + · · · (3)

Viscous stress tensor

Tµ⌫ = (⇢+ P)uµu⌫ + P⌘µ⌫ � 2⌘�µ⌫ � ⇣(@ · u)Pµ⌫ + · · · (4)

⌘ shear viscosity, ⇣ bulk viscosity, Pµ⌫ = ⌘µ⌫ + uµu⌫ , �µ⌫ = P�
µP�

⌫ @(�u�)

Christopher Eling

Null surface geometry, fluid vorticity, and turbulence



Introduction and Background Null horizon dynamics Geometrization of turbulence

CFT Hydrodynamics in d + 1 dimensions

Traceless stress tensor Tµ
µ = 0

Tµ⌫ ⇠ T d+1 (⌘µ⌫ + (d + 1)uµu⌫)� 2⌘�µ⌫ (5)

Projected Equations at Ideal order (neglect viscous pieces)

P⌫�@µTµ� = ⌦µ⌫u⌫ = 0, (6)
u⌫@µTµ⌫ = @µsµ = 0 (7)

Conserved entropy current, relativistic enstrophy two-form

sµ = T d uµ, ⌦µ⌫ = @[µ(Tu⌫]) (8)
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Non-relativistic limit

uµ = �(1, v i/c), v ⌧ c

@i ⇠ �, @t ⇠ �2, v i ⇠ �,T = T0(1 + �2p(x)) (9)

� ⇠ c�1

Fouxon and Oz 2008; Bhattacharyya, Minwalla, Wadia 2008
Incompressible Euler equations of everyday flows

@i v i =0 (10)

@t vi + v j@j vi + @i p =0. (11)
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Fluid/gravity correspondence

Idea: Black hole geometry dual to an ideal fluid (on flat spacetime) at
temperature T in global equilibrium
To make manifest: write black brane metric in boosted form
(Bhattacharyya, Hubeny, Minwalla, Rangamani 2008)

ds2 = �F (r)uµu⌫dxµdx⌫ � 2uµdxµdr + G(r)Pµ⌫dxµdx⌫ , (12)

xA = (r , xµ) ; uµ = �(1, v i), F (0) = 0 the horizon
Entropy: s = v/4 = G(0)/4, Hawking temperature
T = /2⇡ = �F 0(0)/2
Particular class of metrics: AdS black branes

RAB + dgAB = 0 (13)
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Perturbing the metric

Now let uµ(xµ) and T (xµ)- similar to “variation of constants" in
Boltzmann equation in kinetic theory

ds2
(0) = �F (r , xµ)uµ(x)u⌫(x)dxµdx⌫ � 2uµ(x)dxµdr

+G(r , xµ)Pµ⌫(x)dxµdx⌫ (14)

Expand approximate bulk gravity solution order by order in Knudsen
number. Expansion in parameter ✏ counts derivatives of uµ, T , etc
Solve order by order in ✏ starting with the equilibrium metric (local
equilibrium)
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Constraint equations and boundary stress tensor

The GR momentum constraint equations on “initial" data at the AdS
boundary are the Navier-Stokes equations for a fluid

G(n)⌫
A NA = @µTµ⌫

BY (n) = 0 (15)

NA unit spacelike normal
Tµ⌫

BY is the quasi-local Brown-York stress tensor at the boundary

T BY
µ⌫ =

1
8⇡G

(K�µ⌫ � Kµ⌫ + counterterms) (16)

Kµ⌫ = 1
2LN�µ⌫

Computation for metric g(0)
µ⌫ reveals this is exactly the ideal fluid stress

tensor. Conservation = relativistic Euler eqns
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Horizon geometry

Past work (Eling and Oz 2009) we showed one can express
Gauss-Codazzi equations for the horizon (plus field eqns) as the hydro
equations
Choose coordinates so that r = 0 is horizon. Null normal is

`A = gABrBr = (0, `µ) (17)

Induced metric �µ⌫ is pullback of gAB to horizon. It is degenerate:
�µ⌫`

⌫ = 0
Second fundamental form

✓µ⌫ ⌘ 1
2
L`�µ⌫ = �(H)

µ⌫ +
1

d � 1
✓�µ⌫ (18)

Horizon expansion in terms of area entropy current Sµ = v`µ

✓ = v�1@µ(v`µ) = v�1@µSµ (19)
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Horizon dynamics

“Weingarten map":

rµ`
⌫ = ⇥µ

⌫ = ✓µ
⌫ + cµ`

⌫ ; cµ`
µ =  . (20)

cµ horizon’s “rotation one-form" (in GR literature) - encodes temperature
and velocity
We showed Null Gauss-Codazzi equations have form Eling, Neiman, Oz
2010

Rµ⌫Sµ = cµ@⌫Sµ + 2S⌫@[⌫cµ] + F (✓,�(H)
µ⌫ ) = 0 (21)

Christopher Eling

Null surface geometry, fluid vorticity, and turbulence



Introduction and Background Null horizon dynamics Geometrization of turbulence

For the black brane metric above, at lowest order in derivatives

Sµ = 4suµ; ⇥µ⌫ = �2⇡Tuµu⌫ ; �µ⌫ = (4s)Pµ⌫ ; cµ = �2⇡Tuµ (22)

Conservation of Area current– a non-expanding horizon

@µSµ = ✓ = 0; ⌦µ⌫ ⇠ @[⌫cµ] (23)

Non-relativistic limit, Euler equation

✓ = 0 ! @i v i = 0 (24)
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Viscous corrections

Can also get viscous corrections from null focusing (Raychaudhuri)
equation, e.g.

@µ(s`µ) =
1
4
@µSµ =

s
2⇡T

�µ⌫�
µ⌫ (25)

Recover shear viscosity to entropy density ratio ⌘/s = 1/4⇡
Non-relativistic limit and Second Law

@i v i ⇠ ⌫

Z
@i vj@

i v jdd x (26)

@tA ⇠ �
Z

@t
1
2

v2dd x (27)
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What does geometrization imply about turbulent flows?

Vi(x)

P(x)

Figure 3: fluid pressure and velocity in the geometrical picture.  The 
pressure P(x) measures the deviation of the perturbed event horizon 
from the equilibrium  solution. The velocity vector field  Vi(x) is the 
normal vector.   
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Turbulent flows

@t vi + v j@j vi + @i p = ⌫@2vi + fi (28)

For Reynolds number Re = LV/⌫ ⌧ 100 smooth laminar flow
However, when Re � 100 onset of turbulence. Anomaly: energy
dissipation doesn’t vanish
Highly non-linear, random, dofs strongly coupled
Need statistical description- random force fi
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Kolmogorov theory (d = 3)

Kolmogorov: Energy injected at large scales L flows to smaller scale
Ldiss. Large eddies break down to small ones
Inertial Range, Universality, Scale invariance
L � Ldiss effects of both external forcing and viscosity small. Dissipative
anomaly.

Sn(r) ⌘
⌧⇣

(v(x)� v(y)) · r

r

⌘n
�

= Cnh✏n/3ir n/3 (29)

r = x � y

Scale invariance not true for higher moments
One exact result n = 3 (C3 = � 4

5 ). Power spectrum for fluid velocity
E(k) ⇠ k�5/3

2d fluids are different....
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2d turbulence

Enstrophy !2 (and powers of it) are conserved
R
!2d2x

h✏i = ⌫h!2i
Kraichnan: d = 2 Enstrophy cascades directly (to smaller scales),
Energy obeys now an inverse cascade (to large scales)
S3 = 2

3 h✏ir , E(k) ⇠ k�5/3

Inverse cascade statistics is scale invariant...
Long lived vortices
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2+1 dimensional ideal hydro

An additional relativistic conserved current @µJµ = 0 (Carrasco, et. al
1210.6702)

⌦µ⌫ = ⇠✏µ⌫�u�, Jµ = T�2⌦↵�⌦
↵�uµ (30)

Non-relativistic case: vorticity

⌦µ⌫ ! T0!ij (31)

!ij = 2@[i vj], ! = ✏ij!ij (32)

@t! + v i@i! = 0
Both Z =

R
d2x !2

2 and E =
R

d2x v2

2 conserved in absence of friction
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Some holographic statements

Generally, in the inertial range, dual black hole horizon is non-expanding.
Fluctuations preserve cross-sectional area
Generally, the horizon should have random, fractal nature Eling, Fouxon,
Oz 1004.2632
Difference between 2d and higher d turbulence: gravitational
perturbations should behave differently in 4d than in higher dimensions
Evidence of last two seen recently numerically in 4d black brane
(Adams, Chesler, Liu 1307.7267)
What can we say about enstrophy/vorticity in the gravity dual?
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Geometric, gauge invariant characterization

Using Riemann tensor identities, and RµB`
B = 0 one can show

2r[µc⌫]`
C = �Rµ⌫DC`

C = �Cµ⌫DC`
C (33)

Introduce null tetrad basis (`A, nA,mA, m̄A)

`A = (1, 0), `A = (0, uµ); nA = (0, uµ), nA = (1, 0) (34)

One finds

r[µc⌫] =
1
2

C(1)
µ⌫�r u

� = 2iIm 2m[µm̄⌫] (35)

where  2 = CABCD`
AmBm̄CnD .

Non-relativistic limit

! =
1

2T0
Im 2 (36)
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Second variable characterizing horizon is intrinsic scalar curvature
(Ashtekar, et. al 2004; Penrose/Rindler)

�H =
1
4

R̃ � iIm 2 (37)

Find that generically

Re�(1)
H ⇠ @�u�

T
(38)

and in non-relativistic limit

Re�(1)
H ⇠ @i v i . (39)

Im 2 completely characterizes horizon geometry in non-relativistic case
This variable is gauge invariant- independent of how you choose tetrad
(Lorentz rotations)

Christopher Eling

Null surface geometry, fluid vorticity, and turbulence



Introduction and Background Null horizon dynamics Geometrization of turbulence

Numerical GR

Horizon vorticity and “tendicity" can be found numerically

Taken from 1012.4869, R. Owen, et.al
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Geometrical scalings

Direct cascade
No scale invariance

h!n(~r , t)!n(0, t)i ⇠

D ln

✓
L
r

◆� 2n
3

(40)

E(k) ⇠ D
2
3 k�3 ln� 1

3 (kL) . (41)

We expect Log structure in Im 2.
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Inverse cascade: Zero vorticity lines and SLE curves

Zero vorticity lines ! Im 2 = 0
Kraichnan scaling v ⇠ r 1/3 and ! ⇠ r�2/3 implies dfractal =

4
3

shown to be random SLE curves ! conformal invariance (Bernard,
Boffetta, Celani, Falkovich 2006)

Universal scale and conformal structures in 2d cascades rooted in CFT
fluid flows? (role of Weyl tensor here)
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Discussion/Speculation

Hints of conformal invariance in 2d turbulence?
Non-expanding horizon reminiscent of role of area preserving diffeos in
study of Euler equation (Arnold)
Question of finite time singularities in 3d NS equation ! cosmic
censorship?
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Conclusion

Interplay between geometry and fluid physics
2d fluid vorticity mapped into gauge invariant observable characterizing
horizon geometry

Even though we have some exotic, strongly coupled CFT fluid, universality
means holography is relevant for real world turbulence?!
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